2013-2014學年第一學期高三9月月考題

學習頻道    來源: 陽光學習網      2024-07-20         

本站非官方網站,信息完全免費,僅供參考,不收取任何費用,請以官網公布為準!
 
數學試題
(考查時間:90分鐘)(考查內容:全部)
一、選擇題:(每小題6分)
1. 已知集合 ,則 (    )
A.  B.  C.  D. 
2.若復數 的實部與虛部相等,則實數 (    )
A.        B.        C.       D. 
3從甲、乙等 名志愿者中選出 名,分別從事 , , , 四項不同的工作,每人承擔一項.若甲、乙二人均不能從事 工作,則不同的工作分配方案共有
A. 種   B.    C. 種   D. 種
4  ( )展開式中只有第6項系數最大,則其常數項為(    )
A. 120   B. 210   C. 252   D. 45 
5設不等式組 表示的平面區(qū)域為 .若圓   不經過區(qū)域 上的點,則 的取值范圍是Xk   b1. Com
A.   B.       C.     D. 
6、已知圖①中的圖象對應的函數為y=f(x),則圖②的圖象對應的函數為(  ).
 
A.         B.         C.  D. 
7函數 的零點個數為 A.1    B.2    C.3     D.4
8. 已知 關于 的一元二次不等式 的解集中有且僅有3個整數,則所有符合條件的 的值之和是
A.13    B.18   C.21   D.26
9.已知函數 ,其中 為實數,若 對 恒成立,且 .則下列結論正確的是
A.              B.      
C. 是奇函數 D. 的單調遞增區(qū)間是 
10.拋一枚均勻硬幣,正反每面出現的概率都是 ,反復這樣投擲,數列 定義如下: ,若 ,則事件“ ”的概率是(      )
A.    B.     C.     D. 
11. 已知 的外接圓半徑為1,圓心為O,且 ,則  的值為(    )
A.               B.              C.         D.   
12.已知 為平面內兩定點,過該平面內動點 作直線 的垂線,垂足為 .若 ,其中 為常數,則動點 的軌跡不可能是 (  )
A.圓 B.橢圓 C.拋物線 D.雙曲線
二、填空題(每小題6分) 
13. 三棱錐 及其三視圖中的主視圖和左視圖如圖所示,則棱 的長為___ ______.
14.觀察下列算式: 
 ,   ,   ,
 ,
…   …   …   …
若某數 按上述規(guī)律展開后,發(fā)現等式右邊含有“ ”這個數,則 _______.  
15. 已知 當 取得最小值時,直線 與曲線  的交點個數為             
16.已知 是定義在R上的不恒為零的函數,且對于任意的 ,滿足 , ,
考查下列結論:① ;② 為偶函數;③數列 為等比數列;④數列 為等差數列。其中正確的是_________ .
 
三、解答題
17.(本題滿分12分)已知數列 滿足 , ,數列 滿足 .
(1)證明數列 是等差數列并求數列 的通項公式;
(2)求數列 的前n項和 .
18.(本小題滿分14分)
現有甲、乙兩個靶.某射手向甲靶射擊兩次,每次命中的概率為 ,每命中一次得1分,沒有命中得0分;向乙靶射擊一次,命中的概率為 ,命中得2分,沒有命中得0分.該射手每次射擊的結果相互獨立.假設該射手完成以上三次射擊.
(I)求該射手恰好命中兩次的概率;
(II)求該射手的總得分 的分布列及數學期望 ;
19. (本題滿分14分)
設 是拋物線  上相異兩點, 到y軸的距離的積為 且 .
(1)求該拋物線的標準方程.
(2)過Q的直線與拋物線的另一交點為R,與 軸交點為T,且Q為線段RT的中點,試求弦PR長度的最小值.
20.(本題滿分14分)設 ,曲線 在點 處的切線與直線 垂直.
(1)求 的值;
(2) 若 , 恒成立,求 的范圍.
(3)求證: 2013-2014學年第一學期高三9月月考題
數學試題答案
一、 選擇題 
1 2 3 4 5 6 7 8 9 10 11 12
B A   B B D C B C D B A C
二、填空題
13.          14.            15. 2          16.   _①③④_   
三、解答題 
17.解(1)證明:由 ,得 ,
∴           ---------------------2分
所以數列 是等差數列,首項 ,公差為  -----------4分
∴     ------------------6分
(2)              -------------------------7分
  ----①
 -------------------②----------9分
①-②得 
 
 -----------------------------------11分
 ------------------------------------------12分
18.解:(I)記:“該射手恰好命中兩次”為事件 ,“該射手第一次射擊甲靶命中”為事件 ,“該射手第二次射擊甲靶命中”為事件 ,“該射手射擊乙靶命中”為事件 .
由題意知, ,  
所以 
 
 
 .…………………………………………………………6分
(II)根據題意, 的所有可能取值為0,1,2,3,4.
 ,  .
  ,
  ,
  ,……11分
故 的分布列是
 
0 1 2 3 4
  
 
…………………12分
所以 .………………………14分
19. 解:(1)∵ OP→•OQ→=0,則x1x2+y1y2=0,--------------------------1分
又P、Q在拋物線上,故y12=2px1,y22=2px2,故得
 y122p•y222p +y1y2=0, y1y2=-4p2 
 --------------------------3分
又|x1x2|=4,故得4p2=4,p=1.
所以拋物線的方程為:  ------------5分
(2)設直線PQ過點E(a,0)且方程為x=my+a  
 聯立方程組            
消去x得y2-2my-2a=0         
∴        ① --------------------------------7分
設直線PR與x軸交于點M(b,0),則可設直線PR方程為x=ny+b,并設R(x3,y3),
同理可知    ②   --------------------------9分
  由①、②可得  
由題意,Q為線段RT的中點,∴ y3=2y2,∴b=2a
又由(Ⅰ)知, y1y2=-4,代入①,可得
-2a=-4   ∴  a=2.故b=4.----------------------11分
∴ 
∴ 
               .
       當n=0,即直線PQ垂直于x軸時|PR|取最小值 --------------------14分
20.解:(1) -----------------------2分
由題設 , 
 , .     -------------------------------4分
 (2)  , , ,即 
設 ,即 .
 -------------------------------------6分
①若 , ,這與題設 矛盾.-----------------8分
②若 方程 的判別式 
當 ,即 時, . 在 上單調遞減,
 ,即不等式成立.          ----------------------------------------------------------------------9分
當 時,方程 ,其根 , ,
當 , 單調遞增, ,與題設矛盾.
綜上所述,  .------------------------------------------------------------------------10分
(3) 由(2)知,當 時,  時, 成立. 
 不妨令 
所以 , 
 ----------------------11分
數學學習  http://m.seo-9.cn/math/
陽光考試網    考試資訊分享    m.yggk.net             [責任編輯:yggk]
陽光考試網手機版 |   學習頻道 |   學習專欄 |   大學排行榜 |   高考查分系統 |   高考志愿填報 |   專題列表 |   教務管理系統 |   高考錄取查詢

  陽光文庫   免費學習門戶 備案號:閩ICP備11025842號-3 網站地圖

本站所有資料完全免費,不收取任何費用,僅供學習和研究使用,版權和著作權歸原作者所有

Copyright 2025 陽光學習網, All Rights Reserved.